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Abstract

A nonlinear optimization algorithm for linear predictive speech coding was devel-

oped early that not only optimizes the linear model coeffMents for the open loop predic-

tor, but does the optimization including the effects of quantization of the transmitted

residual. It. also simultaneously optimizes the quantization levels used for each speech

segment. In this paper, we present an improved method for initialization of this nonlin-

ear algorithm, and demonstrate substantial improvements in performance. In addition,

the new procedure produces monotonically improving speech quality' with increasing

numbers of bits used in the transmitted error residual. Examples of speech encoding

and decoding are given for 8 speech segments and signal to noise levels as high as 47

dB are produced. As in typical linear predictive coding, the optimization is done on

the open loop speech analysis model. Here we demonstrate that minimizing the error

of the closed loop speech reconstruction, instead of the simpler open loop optimization,

is likely to produce negligible improvement in speech quality. The examt)les suggest

that the algorithm here is close to giving the best performance obtainable from a linear

model, for the chosen order with the chosen number of bits for the codebook.

1 Introduction

Linear prediction speech coding (LPC) techniques were first used for speech analysis and

synthesis by Itakura and Saito [1], and Atal and Schroeder[2]. Conventional LPC requires
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two computational steps which are coefficient estimation of an all-pole model and quantiza-

tion of the prediction residual [3,4]. Typically, the model is developed or optimized without

regard for the fact that the residual will be quantized before it is transmitted to a receiver

for reconstruction, and in t_dition the quantization is not optimized with respect to each

speech segment transmitted.

An algorithm was introduced in [5] which starts from the basic LPC framework, but

optimizes the coefficients of the model taking into account tile fact that the transmitted

error residual is simultaneously qaantized into a specified number of levels. In other words

the coefficients are optimized with knowledge of precisely what information will bc made

available for the speech synthesis process. The algorithm simultaneously optinfizes the levels

chosen for each speech segment rather than using some a priori choice. The fact that this

algorithm supplies these two extra aspects to the usual open loop optimization suggests

that better performance is achievable by comparison to typical LPC approaches. It is the

purpose of this paper to present an improved initialization procedure for the algorithm of

[5]. The optimization involved in the algorithm is nonlinear, and hence it can converge to

a local minimum, and fail to realize the full potential. Hence, having good initialization for

the optimization can substantially improve performance, and this is demonstrated here.

Although the algorithms in [5] and in this paper build on the LPC framework, historically

they were developed after observing the attempt to use blind equalization in speech encoding

in [6]. Reference [6] uses just two quantization levels for the error residual. In blind

equalization of a corrupted binary bit stream, decisions are made each time step about which

of the two possible bits was sent. The procedure is "blind" in the sense that it does not know

what the input sequence was. If t he corruption is not too large the decision process results in

making the output equal (or "equalized") to the input bit stream. It is conceivable that when

one uses only two quantization levels in the transmitted error residual in speech encoding,

a sinfilar binary decision could be made in the speech reconstruction or synthesis step. and

this would then avoid the need to transmit the error residual. Numerical experience gave

poor results using blind equalization in the closed loop reconstruction necessary for speech

encoding, and hence [6] only treats open loop prediction. Here we do not attempt to use

blind equalization. We transmit the information necessary, for the reconstruction of the

residual. The one aspect, of the present algorithm in common with [6] and not part of

typical LPC, is that the LPC coefficients are optimized with knowledge that the residual is

quantized. This time we allow an arbitrary number of quantization levels (among powers

of two) rather than just two levels, and furthermore we let the levels be optimized for each



speechsegment.

2 Basic Concepts in Linear Predictive Speech Encoding

Here we summarize some basic formulation for LPC as a framework for later discussion

[3,4]. Let x(k), k = 1,2,..., N be the sampled time history of a segment of speech signal

(denote the segment bar S ). Then typical encoding, transmission, and decoding steps are

_ follows.

2.1 Encoding:

The encoding or speech analysis uses an open loop prediction ko(k) satisfying

5Co(k) = -oqx(k - 1) - a2x(k - 2) ..... O_nX(k - n) (1)

where the coefficients (ti are chosen to make the open loop prediction error %(k) minimize

the optimization criterion

Jo= }7_,3o(k) (2)
s

where

co(k) = x(k) - ko(k) (3)

Note that by substituting Eq. (1) into Eq. (3), the speech sequence x(k) exactly satisfies

the finite-difference model

x(k) + cqx(k- 1) + ce2x(k- 2) +... + c_nx(k- n) = Co(k) (4)

By choosing the c_i to minimize the equation error in Eq. (4), one minimizes the one step

ahead prediction error, i.e. the open loop prediction error. The sequence of values of the

input Co(k) are now quantized in some way to represent Co(k) by an approximate signal io(k),

requiring fewer number of bits to transmit than the flfll number in x(k). This accomplishes

compression of the signal.

2.2 Transmission:

The values of the ai mid initial conditions of x(k) for n time steps are transmitted, and

the sequence of io(k) for all time steps are transmitted in some form. For an appropriately

chosen order n, the left hand side of Eq. (4) captures the majority of the signal, so the error

in the finite-difference representation, co(k), should be substantially smaller than the signal

x(k) itself. This indicates that using fewer bits to form _o(k) need not result in degraded

quality in the reconstructed signal.



2.3 Decoding:

In the speechsynthesisstep,the signalis reconstructedby the receiver,usingthe closed

loopformula

2c(k) = -alkc(k - 1) - a22_(k - 2) ..... c_.:_c(k - n) + go(k) (5)

starting with the transmitted initial conditions kc(k) = x(k). Comparing to equation (4),

the only error in this reconstruction is the quantization used ill the t ransn]itted values of

go(k)
By using the open loop equation for encoding one obtains a relatively simple linear

problem to find tile coefficients (_i. Since the reconstruction is necessarily closed loop

because the receiver does not know the previous n values of x(k), it would yield better

reconstructed values if the encoding optimization was done for the closed loop prediction

equation, but this is a nonlinear optimization problem whicti is Substantiaily more difficult

to solve.

3 Encoding Scheme

In [5], an encoding scheme is introduced which makes the choice of the quantization levels

for go(k) part of the optimization. The coeffMents c_i are optimized simultaneously with

the choice of these levels.

3'1 Codebook:

The input %(k) is constrained to be a linear combination of the entries in the vectors of a

t)inary codebook. TO: form a codebook, first pick the nmnber of bits r to be used. Then

form the cohnnn vectors of the codebook as all possible vectors of lengttl r with each entry

either +1 or -1. For example, for r = 4 there are 16 vectors in the codebook. Denote the

ith entry of the jth vector in the codebook as @.

3.2 Encoding:

The encoding in Eq. (1) is modified as follows for the jth codebook entry

Yro(k,j(k)) = -c_lx(k - 1) - a2x(k - 2) ..... a'nx(k - n) + u(j(k))

where the forcing function is taken as a linear combination

(6)

u(j(k)) =/_15jl + t32_j'2 +"" +/3rSj_ (7)
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of the jth codebook vector entries. The objective is then to determine constant values for

ai and/3i for all time steps of the speech segment, and determine codebook entries j(k) for

every time step k, in order to achieve the following minimization

N

Jo = rain _-',_N-ke2o(k,j(k)) (8)

%(k, j(k)) = x(k) - _o(k, j(k)) (9)

The A is a positive number less than or equal to one, representing a forgetting factor.

To accomplish this minimization, Ref. [5] formulates the recursive least squares equations

for finding the values of the coefficients ai and /3i that minimize the weighted (by A )

Euclidean norm of the equation errors for all k and any choice of j for the equation

x(k) + c_lx(k- 1) + a.2x(k- 2) +..- + a,,x(k- n) = _,5jl +/32@2 +"" + _rSjr (10)

As noted earlier for LPC, this process minimizes the (weighted) open loop prediction error

of Eq. (6). Such a recursive computation produces running estimates &i(k), _i(k). The

desired solutions for these coefficients minimizing the least squares error are obtained when

k reaches N. However, Ref. [5] also incorporates the choice of j in this running estimation,

picking its value each time step to minimize the current estimation error before progressing

to the next step. The result is that for suffMently long data sets, the recursively updated

values of &i(k),/)i(k) converge to constant values along with a computed set of j(k) for the

speech block. The value of A can be adjusted to influence the number of data points needed

to reach constant values.

3.3 Transmission:

The transmission of the coded signal can be done by sending the final minimizing values

for cq and fl_, the initial conditions, and the code vector entry number j(k) identifying

the minimizing code vector for each time step. Since the choice of code vector typicMly

will not change every time step, one can compress the amount of data further by simply

transmitting changes in the code vector when they occur.

3.4 Reconstruction:

The speech synthesis uses the transmitted information to determine u(j(k)) according to

Eq. (7), and recursively computes

2¢(k) = -alS¥(k - 1) - o_2_c(k - 2) ..... an_c(k - n) + u(j(k)) (11)

starting by using the transmitted initial values of x(k) for the initial conditions on _c(k) •



3.5 Initialization:

The initialization for the minimizationprocessstarts with tile choiceof the numberof

codebookentries,i.e. the numberofbits r, and then needs initial guesses for the coefficients

d.i(0),/)_(0) and an initial value for the covariance function P(0) in the least squares updatc

formula. As is typically (tone in recursive least squares, Ref. [5] sets the &i(0),/_/(0) to zero,

and P(0) to be a large number ([5] uses 100,000 in its examples) times the identity matrix

of appropriate dimension.

The set of possible values of u(j(k)) achievable are given by picking all possible signs in

u(j(k)) = (i)l,_l -k (-ar-)2fl2 +"" q- (-4-)r/3r , producing 2 r levels. The optimization achieved

here differs from that in LPC because the discretization levels are now optimized for each

speech block, and in addition, the coefficients ai are optinfized with knowledge of these

levels. Hence, for a given number of quantization levels, if a global minimum is achieved in

Eq. (8), then the method 0f Ref, [5] would necessarily out perform typical LPC with tim

same number of levels. The problem addreSsed llere is a non,linear problem, and hence it is
7 : : ;=2

possible to converge to a local minimum. Whether or not one reaches a good minimum can

depend on the starting condit, ions in the minimization process, i.e. the initialization. The

objective of this paper is to present improved starting conditions for the algorithm, and to

demonstrate the resulting improved error levels upon convergence.

4 Improved:Starting Condltions

Instead of starting with the desired bit number and performing the optimization, we first

optimize for bit number r = 1, and use the results to optimize bit number r = 2, continuing

until the desired bit number (or speech quality) is reached.

For bit number r = 1, we need initial values for c_i and ill, as well as the initial value

for the (n + 1) x (n + 1) dimensional covariance matrix P. The quantity/}1(0) = 0 is used,

but &_(0) are estinmted by minimizing the sum of the squares of the co(k) in Eq. (4) over

the speech segment. Just as in LPC, it is desirable to have the left hand side capture as

much of the behavior of the signal as possible, leaving as little as p_ossible for the u(j(k))

to capture its resulting residual. Write Eq. (4) in matrix form including each time step of

the N length speech segment, and using the first n points as the initial conditions

z = -A___ + e (12)
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where

x = [ x(n + 1)

e= [ _o(n + l)

--Q = [ OL1 _2

4,0
x(n + 1)

A=

x(N- 1)

x(_ + 2)

_o(n+ 2)
T

• .. O_n ]

x(., - 1)
x(,O

x(N - 2)

Then the value of a, that minimizes {:T_ , i.e.

ATx = (ATA)6_(O) which can be rewritten as

where

x(N) ]r

co(N) ]r

t'o = [A TA] t=

•-. x(1)

•.. x(2)

(13)

•.. x(N-.,)

tile desired starting values _(0) , satisfies

T

Cl,n+ 1 ]

Cn,l

Cn-l,1

el,1

(14)_a(0)= -Pox

X = ATx = [ Cn,n+l Cn-l,n+l "'"

Cn,n Cn,n-1

Cn-l,n Crl-l,n-2

,°°

,°,

C1,. C1,.-1 "'"

(15)

and superscript t indicates the inverse, or Moore-Penrose pseudo inverse if appropriate.

The Ci,j represents the correlation between the values of the data sequence x(k) and the

sequence shifted by i - j time steps• Thus, P0 is the inverse (or pseudo inverse) of the data

correlation matrix.

Tile weighted recursive least squares algorithm is a recursive version of a least squares

equation like Eq. (14) but including the/3i and a forgetting factor. It computes the change

needed in the coefficient estimates each time a new data point is added to the data set. Part

of the reeursive formula is a recursive version of the matrix P0 = (ATA) t above, generalized

to include the/3i terms and denoted by P. For bit number r = 1, the P(0) of the recursive

formula is the inverse of the correlation matrix for [ a__r /31 ]r and hence we use P0 from

Eq. (15) for the upper left n × n partition, and need to assign values for one more row

and column. All these new elements are set to zero, except for the final diagonal element

associated with knowledge of fll which is chosen as 10 6. Such a large number represents

essentially no a priori knowledge about this coefficient•

Once the solution for bit number r = 1 is obtained, then we progress to bit nmnber

r = 2, etc. In general, when going from r to r + 1 for any r, the inital values are set as

follows:

" 7



. The final values with bit mnnber r, obtained for the coefficients (_i after running the

recursive lea.st squares until stabilized values are obtained, are used as starting values

&(0) for the new problem using r + 1 bits.

2. The corresponding procedure is also used for the r initial values for ill,/32,...,fir.

The initial value for/3r+1 is set to zero.

3. The (n + r + 1) x (n + r + 1) dimensional P(0) for the problem using r + 1 bits takes

the form of a block diagonal matrix

P(0) = diag(Pll(0), P22(0), P33(0)) (16)

4. The P11 (0) for the problem with bit number r + 1 is of dimension n × n , and is taken

as the final value of the upper left n x n partition of the (n + r) x (n + r) dimensional

matrix P for bit number r. after finishing the recursive computation.

5. The P'22(0) for bit number r + 1 is of dimension r x r , and is the product of r x r

identity matrix and the norm, or maximmn singular value, of Pll (0) .

6. The P33 (0) for bit numt)er r + 1 is a scalar set to 10 _ .

This procedure for initializing makes fifll use of available information for the ai • The

initialization for the f3i is somewhat ad hoc, and is made with the following considerations

in mind. Numerical experiments showed that using the full (n + r) x (n + r) final matrix

P for bit level r, in place of the first two partiitions of the block diagonal P(0) for the

next bit number, results in rather small adjustlnents of the model coefficients in the next

level, and in corresponding small improvements in speech quality with each bit number.

On the other hand, replacing the P22(0) of item 5 by 1-0_ times the r x r identity matrix,

i.e. using essentially no a priori information about the first r coefficients among the/3i, did

not achieve good results either. It appears to converge to a local m'inimum solution with

poor speech quality. The choice described above allows these r coefficients ,q_ to be adjusted

....... compromise, aabout as nmeh as the ai's. and this appears to be a good There is no priori

infornmtion on the remaining coefficient, /3_-i, and using l06 leaves it totally free to be

adjusted.

5 Performance of the Modified Algorithm

Eight speech segments from two speakers are used to demonstrate the performance of the

modified algorithm. The first four are from a fenmle speaker, and correspond to the words:

8



The pipe / be-gan / to rust / while new. The remaining four are from a male speaker

saying: Oak is / strong / and also / gives shade. The lengths of these eight segments are

3100, 3550, 4720, 6650, 4300, 3700, 4500, 5450 data points, respectively. The length of the

filter is chosen to be n = 10 which is a commonly used order for LPC speech modeling. The

forgetting factor is set to A = 0.999.

Two measures of the speech quality of the reconstructed signlal are considered, the

Euclidean norm of the error, err, and the signal to noise ratio, SNR, i.e. the norm of the

signal divided by the norm of the error, in dB

IIcrrll= -

-- 201og(MI/II . rll); Ilxll-- [Zk 1/2 (17)SNR

Tables 1 and 2 give these measures for the algorithm of rlef. [5] used on tile eight

speech segments, for bit numbers ranging from r = 1 to 10. To evaluate the amount of

compression obtained at each bit level, we comment that the unencoded signal uses 16 bits.

The SNR's for 10 bits tend to be in the range from 8 to 11 dB. The SNrt tends to saturate

as the bit number increases, with only small improvements obtained with increasing the

bit number beyond 4 or 5. However, an important property is that the speech quality does

not necessarily improve each time the number of bits is increased. This property would not

occur if we were able to obtain a global minimum each time.

Tables 3 and 4 give the corresponding results using the modified algorithm with the

improved starting conditions. The average of the SNtl's with bit number r = 10 for the

female speaker is 35 dB, and for the male speaker is 28 dB, which represents a very substan-

tial improvement. By making use of the results for bit number r to start the algorithm for

bit number r + 1, the resulting SNRs now exhibit monotonic improvement with increasing

bit nmnber. There appears to be a relationship between how good the bit number 1 result

is, and how good higher bit numbers are. For example, segment number 3 starts with the

highest SNt/at bit number one, and for bit number 10 it is still the highest with an im-

pressive SNtl of 47 dB. Similarly, segment number 8 starts with the lowest SNt/and ends

with the lowest for bit number 10.

The use of the result from the previous bit number makes the computation for the next

bit number take less time than starting from the initialization for that bit nmnber used in

tlef. [5]. In the case of speech segment 4 which is the longest segment, the solutions for bit

levels r = 4 through 7 took about 48% less time than using [5], and for bit levels r = 8, 9,

and 10 it took 43%, 34%, and 27_, less time, respectively. However, to get the initialization

9



for a given bit number we need to run all lower bit numbers first, and this means that using

the new initialization take somewhat longer. For segment 4, the total computation time for

bit level 4 takes approximately twice as long as in Ref. [5], and for bit level 7 somewhat less

than three times as long. For this extra computation time the signal to noise ratios improve

from 8.9 and 9.,5 to 16 and 27 dB respectively. These computation times using code written

in Matlab and run on a work station are near real time.

The mean opinion score (MOS) is the most commonly used measure for the subjective

quality of coded speech. It is extracted from the results of a category-rated test performed

by 20 to 60 untrained listeners. Reference [3] describes a curve fitting procedure used

to convert MOS to equivalent Q values (EQ), or dB levels which we can compare to our

SNtls. The dB values are categorized in increments of 5 dB starting from 5 dB (bad) to

35 dB (good). Table 5 reproduced from [3] gives such evaluations for some existing coders.

The flat condition in the table refers to unfiltered speech recorded with a high quality

microphone, and the Iris condition refers to speech filtered through an IRS transmitting

filter, such as speech that would be recorded from a typical telephone handset. The line

labeled "source" represents the error between the original signal and the signal using 16 bits

which is then used for the encoding. Among the coding methods listed, the conventional

LDCELP employs a 10-bit eodebook with a 50th order LPC predictor and a 10th order

adaptive linear predictor. VSELP uses two 7 bit eodebooks and a long term filter state,

which is also a 7 bit codebook (together requiring 14 bits for index delivery), with a 10th

order LPC predictor to carry out speech coding. Together this requires 14 bits for index

delivery, so that for comparison purposes one must compare to the performance using a 14

bit code book in the method presented here (beyond the last entry for 10 bits in our table).

Table ,5 gives a rough understanding of what we might expect if MOS tests were run on

the current method, and it is clear that the present method is competitive. However, true

MOS tests under uniform testing conditions for each voeoder (voice eneoder) are needed to

actually determine the potential performance advantages of the new" method.

As in LPC, the information transmitted in the vocoder proposed here is optimized for

reconstruction using a open loop predictor, but the receiver necessarily reconstructs with

a closed loop predictor. It is of interest to see how much signal is lost in the open loop

encoding and how nmch is lost in the closed loop reconstruction. This information is given

in Tables 6 through 9. The column labeled SNRc is the signal to noise ratio given previously

for the reconstructed signal using the closed loop formula (11), and SNRo is the signal to

noise ratio of the open loop prediction of equation (6). The third column gives the percent

10



of signal to noiseratio of SNRccomparedto SNRo. The best that the reconstruction

couldpossiblydo is to reproducethe openloopencoding,whichcorrespondsto 100%.A

smallerpercentageindicatesthe amountof SNRlostby goingfromopento closedloopfor

performingthe speechreconstruction.By bit number10 the amountof SNRlost is about
onefourth, with the percentagesrangingfrom 68.9%to 78.2_ for the 8 speechsegments.

Again,the speechsegmentwith the bestpercentagefor bit 1, hasthe bestpercentagefor
bit 10.

6 Potential Improvement with Closed Loop Optimization

What matters in any vocoder is the quality of the reconstructed speech. LPC optimizes the

quality of the speech encoded wittl the open loop equation (6) because this optimization is

relatively simple, and the same is done here. Presumably, improved open loop encoding is

reflected in improved closed loop reconstruction. In this section we address the question of

how much improvement might be obtainable if we optimized the error in the reconstruction.

This means that we replace Eqs. (2) and (3) by

Jc = _ %2(k) (18)
S

ec(k) = x(k) - _c(k,j(k)) (19)

_(k,j(k)) = -c_l_c(k- l,j(k-1))-_,2kc(k-2,j(k-2)) ..... c_,_5:c(k-n,j(k-n))+u(j(k))

(20)

with the closed loop output J:c(k) of Eq. (11) substituted, and then develop an algorithm to

minimize Eq. (18) over the c_i, _i, and j(k). In order to minimize Jc, we develop a nonlinear

least squares algorithm using analytical gradient and Hessian information, and setting any

negative eigenvalues to zero for that portion of the Hessian that comes from the second

derivative terms [7]. These iterations are started for each bit level using the results of the

vocoder developed here. Thus, the nonlinear least squares algorithm of this section could

be made the second part of the total speech algorithm, aiming to reach speech encoding

whose reconstruction is the best possible for the chosen model order mid bit numl)er.

Table 10 gives the results of this optimization. For bit number 10 the amount of im-

provement over Tables 3 and 4 is always less than 1 dB, and ohen substantially less. Thus,

we conclude that the extra complexity in optimizing the reconstructed speech signal error

as an extra step after optimizing the open loop encoding, is not justified. Of course opti-

mizing the reconstructed speech signal is a nonlinear optimization. There is no way to know

11



whetherwehavefoundtheglobalminimmnby useof the nonlinearleastsquaresalgorithm

here,initialized from tile openloopoptimizationresults. Nevertheless,the consistencyof

all of theseresultsfor the8 speechsegmentssuggeststhat thereisonlyaverysmallamount

of improvementavailableby doingthe closedloopoptimizationin placeof the openloop.

Thissuggeststhat thevocoderdevelopedhereeasilycapturesessentiallyall of tile potential

speechquality availableby thechosenfilter orderandbit number(or codebookvectors).

7 Conclusions

Here we have developed an initialization process for the vocoder developed earlier that very

substantially improves its performance. It also consistently gives improved performance

when the number of bits used is increased. Although we optimize the open loop predictor

e_ does LPC, the amount of improvement is quite small that could be obtained by actually

directly optimizing the closed loop reconstructed speech signal quality. It is sufficiently small

that any significant extra computational effort would not be justified. Rough comparisons

indicate that the proposed vocoder performance could be competitive. The next step is

to actually evahmte the potential performance advantages using MOS tests comparing to

existing methods.
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seg# 1

 it# Ilerrll
1 10.6900

2 7.5088

3 6.1292

4 5.7824

5 5.6382

6 5.5952

7 5.6201

8 6.1560

9 6.1446

10 5.4031

SNR

2.1020

5.1704

6.9338

7.4397

7.6591

7.7256

7.6870

6.8958

6.9119

8.0289

seg#2

llerrll
10.2170

7.2539

6.2971

6.4906

6.1148

7.8297

6.5351

8.6430

7.1184

SNR

3.1198

6.0948

7.3234

7.0606

7.5786

5.4313

7.0012

4.5730

6.2586

8.7072

se9#3

ll rrll
10.2260

6.9625

5.5346

4.9370

5.2342

4.8731

4.6804

4.9920

4.7546

SNR

3.0743

6.4135

8.4070

9.3995

8.8918

9.5128

9.8631

9.3034

9.7266

9.9045

seg#4

ll rrll
10.0250

6.0034

5.0588

4.8093

4.5001

4.4749

4.4726

4.3559

4.4212

5.3697 4.6582 4.3060

SNR

2.5206

6.9742

8.4613

8.9005

9.4777

9.5266

9.5310

9.76o6-
9.6313

9.8608

Table 1: Tile Euclidean norm and the signal to noise ration for segments #1, #2, #3, and

#4 using the original initialization in [5].
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bit#
1

2

3

4

5

6

7

8

9

10

seg#5

ile  ll SNR
9.2846 2.2080

5.7972 6.2990

4.5242 8.4525

4.0774 9.3557

4.0296 9.4580

3.9711 9.5852

3.8738 9.8006

3.9596 9.6104

3.8545 9.8440

3.5071 10.6643

se9#6

tlervll } sNR10.5040 2.5518

7.6989 5.2505

6.8499 6.2653

6.5148 6.7010

6.0687 7.3171

6.3260 6.9565

5.9694 7.4604

6.2548 7.0548

5.8460 7.6419

4.6599

seg#7

llcrrll
8.8284

4.9202

3.5340

3.3269

3.2257

2.8116

2.7830

2.7642

2.7472

9.6115 2.7996

SNR

2.5670

7.6451

10.5190

11.0439

11.3123

12.5057

12.5944

12.6532

12.7067

12.5428

seg#8

Ilerrtl
8.9596

6.8906

6.4524

6.3875

9.8403

9.7462

7.5068
8.1778

SNR

10.1554

1.0189

3.2996

3.8702

3.9580

0.2045

0.2879

2.5556

1.8120

7.2672 2.8373

-0.0693

; :L:77 - : : : _:- :

Table 2: The Euclidean norm and tile signal to noise ratio for segments #5, #6, #7, and

#8 using tile Original init_al'iz-a[ion in [511 ::: !: :

7

8

9

10

seg#1

bit__ [terrll
1 10.5016

2 6.0716

3 3.5933

4 2.3918

5 1.6356

6 1.2033

0.9633

0.8184

-0.6744

0.5545

SNR

2.2567

7.0158

11.5721

15.1072

18.4081

21.0746

23.0066

24.4221

26.1030

27.8036

seg#2

llerrlt SNR
12.6157 2.9729

7.5711 7.4079

4.4410 12.0415

2.9581 15.5708

1.9893 19.0172

1.3757 22.2205

0.9821 25.1480

0.7491 27.5006

0.6171 29.1840

0.5056 30.9153

seg#3

II r ll SNR

10.7945 3.1509

7.8669 5.8988

4.3603 11.0247

2.2975 16.5897

1.3518 21.1970

0.7285 26.5661

0.3593 32.7065

0.2071 3C4924

0.1265 41.7704

0.0717 46.7031

seg#4

13.2577 2.6584

7.8404 7.2209

4.7244 11.6208

2.8488 16.0145

1.8872 19.5915

1.1658 23.7752

0.8148 26.8870

0.5637 30.0868

0.4312 32.4149

0.3596 33.9909

Table 3: The Euclidean norm of the error and the signal to noise ratio for segments #1,

#2, #3, and #4 using the new initialization procedure.
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bit#

1

2

3

10

seg#5

Herr]] SNR
10.0058 2.5381

5.2222 8.1861

3.2469 12.3137

--= 2.iii6 i6.0508

1.7588 17.6387

1.4205 19.4940

1.1707 21.1743

0.9815 22.7050

0.8204 24.2622

0.7044 25.5872

seg#6

HerrI] SNR
10.4803 2.5715

6.2075 7.1206

4.3628 10.1836

2.6805 14.4147

1.6751 18.4982

1.0785 22.3223

0.6937 26.1559

0.4903 29.1693

0.3588 31.8814

0.2852 33.8777

sev#7

Ilerr H SNR

9.8475 2.6128

5.6635 7.4177

3.4512 11.7199

2.1235 15.9383

1.3870 19.6379

1.0235 22.2772

0.7594 24.8695

0.6025 26.8805

0.5171 28.2075

0.4622 29.1828

seg#8

Herr[[ SNR
11.7792 1.4402

7.9410 4.8650

5.9079 7.4338

3.9910 10.8409

2.7326 14.1309

2.0632 16.5717

1.6376 18.5785

1.2866 20.6735

1.0075 22.7978

0.7898 54.9122

Table 4: The Euclidean norm of the error and the signal to noise ratio for segments #5,

#6, #7, and #8 using the new initialization procedure.

Vocoder Type kb/s

G.726(ADPCM) 32

G.728(LDCELP) 16

GSM(RPE-LTP) 13

IS54(VSELP) 8
source 128

IRS Flat

MOS EQ MOS EQ
3.77 27.87

3.88 30.38

3.63 25.58

3.49 23.79

4.10 35.00

3.70 35.00

3.77 35.00

3.56 33.25

3.47 31.89

4.03 35.00

Table 5: MOS test results for several existing vocoder types [3]

seg#l seg#2

SNRo SNRc % %bit#
1

2

3

4

5

6

7

8

9

10

11.7041 2.2567 19.2816

SNRo

14.1828

18.4081

SNRc
2.9729 20.9609

67.7717

16.2364 7.0158 43.2104 18.1943 7.4079 40.7158

20.2139 11.5721 57.2481 22.0268 12.0415 54.6675

24.0978 15.1072 62.6911 25.3486 15.5708 61.4267

27.1619

21.0746

28.5015

31.645430.1759

19.0172

22.220569.8391

70.9875

66.7236

70.2171

32.4094 23.0066 34.3546 25.1480 73.2013

34.3550 24.4221 71.0875 36.7348

38.691736.0308 26.1030 72.4464

37.6211 27.8036 73.9041 40.4305

27.5006

29.1840

74.8627

75.4270

30.9153 76.4654

Table 6: The signal to noise ratios for tile open loop encoding and for the closed loop

reconstructed signal, and the ratio of the latter to the former given in percent. Sp_eh

segments #1 and #2.
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bit#

1

2

3

4

5

seg#3 seg#4

SNRo SNRc % SNRo SNRc _

14.7564 3.1509 21.3526 15.1423 2.6584 17.5558

18.7843

23.5851

28.8222

33.8082

5.8988

11.0247

16.5897

21.1970

31.4029

46.7443

57.5588

62.6978

19.1231

23.3566

27.3273

31.4017

7.2209

11.6208

16.0145

19.5915

37.7602

49.7536

58.6025

62.3898

ff-30.2141--- 26.5661
2 _1 45.2169- _65
8 50.0510 37.4924

9 54.7252 41.7704

-10-- 59.7176 46.7031

67.7462

72.3325

74.9084

76.3276

78.2065

35.1828
6--

38.9523

41.9132

[44.2857
46.0070

23.7752

26.8870

30.0868

32.4149

67.5762

69.0254

71.7838

73.1949

33.9909 73.8820

Table 7: The signal to noise ratios for the open loop encoding and for the closed loop

reconstructed signal, and the ratio of the latter to the former given in percent. Speech

segments #3 and #4.

II
1

2

3

5

6

__7 .....

8

SNRo
14.4451

18.3325

21.6119

24.4126

26.6311

28.8033

[.31.0721
33.1476

seg#5

SNRc

2.5381

8.1861

12.3137

16.0508

17.6387

19.4940

21.1743
L

22.7050

24.2622

%
17.5703

44.6533

56.9767

65.7480

66.2333

67.6798

68.1456

68.4966

69.2316

SNRo

16.0680

20.2947

23.8674

28.2908

32.5703

36.3803

39.9759

43.1481

seg#6
SNRc
2.5715

7.1206

10.1836

14.4147

18.4982

22.3223

26.1559

29.1693

%
I6.0040

35.0862

42.6677

50.9517

56.7946

61.3581

65.4293

67.6027

9 35.0450 H 45.5918 31.8814 69.9278

10 36.7098 25.5872 69.7013 [[ 47.5695 33.8777 71.2172

z

Table 8: Tim signal to=noise:ratios for the open loop encoding and for the closed loop

reconstructed signal, and the ratio of the latter to the former given in percent. Sp_ch

segments #5 and #6.

16



bit# SNRo

1 13.9421

2 18.2153

3 22.9482

4 26.6642

5 30.9059

6 34.0348

7 36.9603

8 39.3i35

9 41.1298

lO 42.3422

seg#7

SNRc

2.6128

7.4177

11.7199

15.9383

19.6379

22.2772

%

18.7404

40.7222

51.0712

59.7741

63.5411

65.4542

SNRo

11.0268

14.5319

18.2763

22.0020

24.9070

27.2988

seg#8

SNRc

1.4402

4.8650

7.4338

10.8409

14.1309

16.5717

%

13.0606

33.4780

40.6746

49.2725

56.7344

60.7049

24.8695 67.2869 29.5096 18.5785 62.9577

26.8805 68.3746 31.4522 20.6735 65.7299

28.2075 68.5818 33.0869 22.7978 68.9027

29.1828 68.9214 34.9470 24.9122 71.2856

Table 9: The signal to noise

reconstructed signal, and tile

segments #7 and #8.

ratios for the open loop encoding and fi)r the closed loop

ratio of the latter to the former given in percent. Speech

bit#
1

2

3

4

5

6

7

8

9

10

seg#l seg#2

2.4679 3.0863

7.5290 8.0253

12.2880 12.5018

15.7835 16.0819

19.0602-19.6372

seg#3

3.3356

6.6427

11.3505

16.7848

21.2640

S N Ropt

seg#4
2.7293 2.7171 2.5986

7.3882 8.2111 7.3181

11.8651 12.5419 10.3847

16.2313 16.2452 15.0043

19.8404 17.9537 19.2594

seg#5
2.6743

11.7578

15.9949

19.7424

seg#6 seg#7 seg#8

1.6407

5.0847

7.8394

11.4344

14.6990

21.8042

23.7572

25.1132

22.6536

25.5528

27.8093

26.6003

32.7834

37.5280

23.9664

27.0377

30.1814

19.8226

21.6392

23.1348

23.0186

26.8645

29.6485

22.3635

24.9577

27.0550

m

17.3232

19.6836

21.5921

26.8069 29.4403 41.8666 32.5186 24.6874 32.2450 28.3679 24.0594

"28.45i4 31.1397 46.8472 34.0583 25.9113 34.1923 29.4471 25.8977

Table 10: The SNR for all segments when the norm of the error in tile closed loop recon-
struction is minimized.
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